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1 Introduction

Pricing algorithms enable high-frequency automated price changes in response to time-varying

market conditions. This feature—often called dynamic pricing—has the potential to increase

efficiency. By raising prices in periods of high demand (or low supply) and lowering prices in

periods of low demand (or high supply), algorithms can increase output and overall welfare

relative to prices that are held fixed. In this way, dynamic pricing shares parallels with other

forms of flexible pricing, such as prices that vary geographically or personalized pricing.

The presence of intertemporal spillovers can complicate the analysis of dynamic pricing.

Dynamic pricing differs from other forms of price discrimination is that individual consumers

are often able to substitute across periods with little cost. Consumers may act strategically, tim-

ing their purchases to avoid periods with higher prices. Thus, with dynamic pricing algorithms,

demand will endogenously respond to the time-varying nature of prices. Further, by shifting

demand away from periods with high demand, firms that face capacity constraints or other

discrete operational decisions can also increase welfare by reducing costs.

In this paper, we provide an empirical study of the adoption of a dynamic pricing algorithm

in a setting with time-varying demand and capacity constraints. We exploit the staggered rollout

of the algorithm to evaluate the impact of the algorithm on demand and welfare. We find that

dynamic pricing significantly reduced demand volatility and increased the share of transactions

during low-demand periods. Consumers appear to have responded to both across-day and

within-day price variation, even at very high frequencies. On average, prices fell and output

increased. Our results suggest that the adopting firm had more efficient utilization as a result

of dynamic pricing, lowering costs and increasing overall welfare.

Our paper makes three distinct contributions. First, we document the adoption of a dynamic

pricing technology and its impacts in practice. Though there is a growing literature on the the-

oretical effects of pricing algorithms, less is known about the design and impacts of algorithms

that firms use in various contexts, such as retail markets.1 Our results indicate that the adoption

of dynamic pricing led to lower average prices, lower costs, and greater profits for the adopting

firm. Second, we present evidence that consumers strategically time their purchases, generat-

ing intertemporal demand spillovers at high frequencies and across days of the week. Third, we

highlight how these spillovers may influence dynamic pricing decisions. We use an empirical

model to quantify the effects of intertemporal spillovers on the optimal pricing decisions. We

define and estimate a parameter, the volatility semi-elasticity (VSE), that reflects the response

of time-series variation in quantities to time-series variation in prices. The parameter provides

guidance on how much time-series variation in prices is needed to obtain a target reduction in

demand volatility.

To motivate the analysis, we provide a conceptual framework in Section 2. We use the
1Important exceptions include studies of advanced-purchase markets, like airlines and hotels, and recent studies

on rail-hailing platforms, as discussed with the related literature below.
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framework to lay out three additional forces that affect optimal pricing when intertemporal

spillovers are present. By reducing price in the low-demand period, consumer demand is pulled

away from the high-demand period. This is costly in that it reduces sales to high-margin con-

sumers, but it can be beneficial if it reduces production costs costs. Because of these two mech-

anisms, intertemporal spillovers have ambiguous effects on the desired amount of time-series

price variation. Third, dynamic pricing may yield price and quantity increases simultaneously

in some periods, due to an indirect spillover effect. One implication of these features cost

reductions (and greater efficiency) may be obtained without raising prices in periods of high

demand. This is motivated by a feature of our setting: in practice, firms may place limits on the

maximum price that can be charged in response to increased demand.

Our empirical setting is the staggered adoption of a dynamic pricing algorithm in a large

restaurant chain in the Nordic countries. We observe high-frequency transaction data for each

restaurant, which we describe in Section 3. With the adoption of dynamic pricing, the restau-

rant chain switched from a flat (or uniform) delivery fee to a time-varying delivery fee. Delivery

represents a substantial portion of the restaurant chain’s overall business and delivery fees rep-

resent approximately 15 percent of the average transaction price.2 The algorithm that sets the

delivery fee updates prices every ten minutes based on residual demand, historical orders, and

target quantities.3 Our high-frequency dataset covers two and a half years, from January 2020

through June 2022.

In Section 4, we examine how consumers respond to dynamic pricing. First, we use a pre-

post analysis to look at the demand response across higher-demand and lower-demand periods.

We show that, in every hour of the week, within-hour demand became less volatile after the

implementation of dynamic pricing. Second, we show that consumers appear to strategically

time their purchases at very high frequencies. At identical prices, quantities are higher than

expected when the price 5 minutes prior was higher, and quantities are lower than expected if

the previous price was lower. In other words, consumers seem to be following price changes at

a high frequency and responding accordingly. Consistent with this, we document that website

traffic increased substantially—more than the increase in order volume—after the introduction

of dynamic pricing, and it increased by more during lower-demand days of the week. This

suggests that consumers engaged in active price shopping after the adoption of the algorithm.

We evaluate the impact of the dynamic pricing algorithm on prices, quantities, and demand

volatility by utilizing the staggered timing of adoption. The algorithm was rolled out in three

distinct phases: to an initial group of restaurants in September 2020, to a second group in June

2021, and to the remaining restaurants in November 2021. We exploit this variation in timing

by matching early adopters to late adopters based on empirical sales patterns. Due to the long

panel of our data, we are able to match restaurants based on periods in which all restaurants
2Delivery is done in-house by employees and is not outsourced to a third party.
3The algorithm does not directly incorporate the prices of other restaurants.
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employ the same technology: before any restaurant used dynamic pricing (July-August 2020)

and also after all restaurants employed dynamic pricing (January-June 2022). We detail our

empirical strategy in Section 5.

Section 6 presents results. In our setting, the adoption of dynamic pricing lowered average

transaction prices and created a great deal of variation within and across days. Average prices

were higher during certain periods than others, but even within an hour prices could fluctuate

up and down multiple times. We find that dynamic pricing reduced demand volatility across

hourly periods and days of the week. The within-week coefficient of variation for hourly trans-

actions fell by 10 percent, and the share of transactions occurring during the weekend (the

peak demand days) fell by more than 3 percentage points. We estimate that the volatility semi-

elasticity—defined as the percentage change in the volatility of quantities in terms of a change

in the volatility of prices—is −1.96. Thus, a relatively modest increase in the time-series vari-

ation in prices led to a meaningful decline in demand volatility. We find that the total number

of transactions increased, as well as revenues, though the revenue results are weaker. Overall,

our findings of lower average prices, higher output, and reduced demand volatility suggest that

dynamic pricing improved utilization for the adopting firm and increased consumer welfare.

Section 7 introduces an empirical model that builds on the conceptual framework from

Section 2. We use the model to estimate demand across hours within a week and to estimate

the marginal production costs in each hour. Our demand estimates provide additional support

for high-frequency consumer substitution. The model finds that consumer welfare increases

and production costs fall in the dynamic pricing regime. Furthermore, intertemporal spillovers

in demand play an important role in this setting. The model estimates imply a reduction in

variable costs by 3 percent. A counterfactual without intertemporal spillovers in the demand

indicates that the same hour-by-hour price changes would have instead increased variable costs

by 3 percent. Finally, we use a counterfactual to examine how the optimal distribution of prices

across hours would be be different in the absence of strategic timing by consumers.

Section 8 concludes. Overall, our analysis highlights the implications of strategic consumers

for dynamic pricing, including how frequently prices should change and how much volatility in

prices is desirable, and it shows potential efficiency gains of dynamic pricing algorithms.

Related Literature Our paper complements several empirical papers that study the effects of

time-varying pricing and algorithms in various contexts. Our paper is unique in that we observe

the switch from uniform pricing to a time-varying pricing algorithm in our data, and we use

this data to document the empirical effects of a dynamic pricing algorithm. A related idea is

studied by Assad et al. (2022), who explore the adoption of pricing algorithms in the context of

retail gasoline. A key difference is that, in their context, retail gasoline stations engage in time-

varying pricing whether or not they adopt an algorithm, though the algorithm may increase the

frequency of price changes.
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Empirical work on high-frequency dynamic pricing includes studies of advance-purchase

markets, such as airlines (Lazarev, 2013; Williams, 2022; Aryal, Murry and Williams, 2022;

Hortaçsu et al., 2021), hotels (Cho et al., 2018), and event tickets (Sweeting, 2012). In the

context of ride hailing, Castillo (2020) studies the welfare impacts of real-time pricing that

shifts both supply and demand. These papers typically model the arrival of consumers at a

particular point in time as an exogenous process. A key contribution of our work, relative to

these papers, is to explicitly consider intertemporal substitution and the endogenous impact

of prices on demand volatility. The results in our paper indicate that consumers strategically

time their purchases, and we show how firms can benefit from this behavior through dynamic

pricing.4

Intertemporal spillovers in demand have been considered in settings without high-frequency

dynamic pricing, such as video games (Nair, 2007; Lee, 2013), printers (Melnikov, 2013),

and camcorders (Gowrisankaran and Rysman, 2012). These studies analyze contexts with

durable goods where consumers can choose to delay purchases and prices are infrequently

updated. Hendel and Nevo (2013) study weekly price changes (sales) in the context of storable

goods. Though the goods in our setting are not storable, consumers who shift demand to other

periods function in a similar way to storage. We complement this work by focusing on how

intertemporal spillovers may affect costs, rather than screening among customer types.5

Finally, there is a growing literature studying the potential (anti)competitive effects of pric-

ing algorithms (Calvano et al., 2020; Brown and MacKay, 2021). The algorithm we study does

not explicitly incorporate the price of rivals, which is a key feature in the literature of algo-

rithmic competition. In our analysis, we do not consider oligopoly interactions. However, we

believe our study highlights additional considerations for future research on dynamic pricing in

a competitive context.

2 Conceptual Framework

To provide a conceptual framework for our analysis, we introduce a model where a monopolist

faces time-varying demand and convex production costs. In this model, we assume complete

information, but the intuition generalizes to incomplete information environments.

Consider a monopolist facing demand across three periods, t ∈ {1, 2, 3}. These periods can

be conceptualized as capturing shorter (e.g., 10 minute) or longer (e.g., daily) intervals. Let
4A comparison can also be made to the analysis of real-time pricing in electricity markets. Jessoe and Rapson

(2014) provide evidence that consumers exhibit intertemporal complementarities in this context; i.e., they reduce
consumption across unaffected periods in response to higher prices during peak times.

5The theoretical literature considering time-varying pricing is more extensive, going back to at least Coase (1972)
and Stokey (1979) in the context of durable goods. Dana (1999) studies intertemporal spillovers when demand
peaks are unknown, which shares parallels with our empirical context. Dana (1999) considers a pricing schedule
based on cumulative purchases to account for uncertain demand realizations, which is typical in advance-purchase
markets and rare in retail settings.
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demand in period t be given by qt(p1, p2, p3), where pt provides a price in each period. We

assume that quantity demanded in a given period is decreasing in the price in that period,

i.e., dqt(p1,p2,p3)
dpt

< 0. The monopolist has per-period production costs c(q) that is positive and

convex, i.e., c(·) > 0 and c(q)+c(q′)
2 ≥ c( q+q′

2 ) ∀ q, q′ > 0.

Without dynamic pricing, the monopolist chooses the same price in each period. Let the

optimal uniform price be given by p. In our model, demand may vary across periods. Without

loss of generality, let q1(p) ≤ q2(p) ≤ q3(p), so that t = 1 is a low demand period and t = 3 is a

high demand period.

When the monopolist implements dynamic pricing, the price varies optimally across periods.

Let the optimal dynamic pricing policy be given by the vector (pD1 , p
D
2 , p

D
3 ). The firm’s objective

is given by

max
p1,p2,p3

p1q1(p1, p2, p3)− c(q1(p1, p2, p3)) (1)

+p2q2(p1, p2, p3)− c(q2(p1, p2, p3))

+p3q3(p1, p2, p3)− c(q3(p1, p2, p3)).

Intertemporal spillovers are captured by the assumption that qt depends on prices other than

pt.

Without intertemporal spillovers, we can express demand as qt = qt(pt), and the firm can

then solve separable problems for each t:

max
pt

ptqt(pt)− c(qt(pt)) (2)

Moving from uniform pricing to dynamic pricing without intertemporal spillovers has intuitive

implications. The optimal flat price will typically fall in between the optimal prices in the low

(pD1 ) and the high demand (pD3 ) periods. Thus, dynamic pricing will yield higher prices in the

high-demand periods, and lower prices in the lower demand period. In any period, an increase

in price, relative to p, results in lower quantities and lower costs.

Let us assume that consumers can strategically time their purchases, leading to substitution

across periods, i.e., dqt
dp−t

> 0. With such intertemporal spillovers, three additional mechanisms

influence the optimal pricing decisions. The first two are direct spillover effects that can miti-

gate or exacerbate the time series variation in prices. These result from the fact that a low price

in period 1 may pull consumers away from period 3 (the high-demand period). First, when con-

sumers in period 3 are more profitable, this creates an incentive for the firm to keep pD1 closer

to pD3 , reducing the variation in prices over time. In the extreme case of perfect substitution

across periods, the firm will optimally choose a uniform price, pD1 = pD3 = p.

On the other hand, the firm will have an additional incentive to further reduce pD1 to reduce

production costs in the high-demand periods. If a greater reduction in pD1 can avoid additional
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operational costs, then the difference between pD1 and pD3 may be greater than the counter-

factual with no intertemporal spillovers. These two effects show that intertemporal spillovers

have ambiguous effects on the optimal time-series variation in prices. We illustrate these two

mechanisms with specific examples in Appendix A.

The third mechanism is an indirect effect of “re-pricing” for the current period based on

change in demand from the prices in other periods. For example, an increase in period 3 prices

may cause consumers to switch to period 2, providing an incentive to increase pD2 . This indirect

effect provides one of the more counter-intuitive results with dynamic pricing, in that there are

periods for which dynamic pricing will causally increase prices and quantities at the same time.

Likewise, there may be periods where both prices and quantities decrease. We document these

occurrences in our empirical application in Section 7, and we compare it to a counterfactual

with no intertemporal spillovers, where such results do not occur.

These mechanisms show how intertemporal spillovers have ambiguous effects on the time-

series pattern of optimal prices and can complicate the analysis of efficiency. Optimal pricing

may yield higher prices, greater quantities, and higher costs in some periods. Further, costs

may be reduced by consumers substituting from high-demand periods to low-demand periods,

yielding more efficient production for (a subset of) the same consumers.

In some settings, the adoption of dynamic pricing may come with an added constraint of a

price cap. Indeed, in our empirical setting, the maximum price charged was constrained by the

adopting firm to a level that was similar to that prior to the adoption of dynamic pricing. In

our setting, we understand that the firm did not want to risk consumer backlash from dynamic

pricing, so placing limits on the maximum price was a key consideration. In addition to avoiding

consumer backlash, firms in other context may wish to avoid the scrutiny of policymakers. For

example, surge pricing for Uber has received a lot of negative attention.6

We highlight that our analysis shows that even without the ability to raise prices above the

optimal uniform price, dynamic pricing can pull demand away from high-demand periods and

reduce operational costs. Because of these forces, the use of dynamic pricing may provide an

opportunity for additional efficiency gains when consumers strategically time their purchases.

3 Empirical Setting

3.1 Data

Our primary data comes from a single restaurant chain located in the Nordic countries. The

chain consists of approximately 300 restaurants. It is the largest chain in its category and

one of the most popular restaurant brands. The chain offers dine in, take away, and home

6See, e.g., “Uber forced to suspend surge pricing in Delhi,” https://www.theverge.com/2016/4/21/11477038/uber-
surge-pricing-delhi-india. Of course, a change in the reference price can shift the classification of high-price periods
to the baseline price and low-price periods to discounts.
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delivery. The vast majority of orders are for take away and home delivery. Home delivery is

produced in-house with a proprietary online ordering system, and it is serviced with branded

vehicles by restaurant employees. During our sample period, 228 of the restaurants offered the

home delivery option. For these restaurants, take away and home delivery have roughly equal

revenue shares.

We obtained high-frequency transaction-level sales data for each restaurant. The data come

from the restaurant chain’s online ordering system, and they include revenue, type of order

(delivery, take away, and eat in), and a timestamp. The online ordering system is the primary

means of ordering delivery and take away, and these two order types constitute the vast majority

of revenues in our sample. We combine this data with the full panel of delivery fees, allowing us

to observe the prices even when no purchases were made. For much of our analysis, we collapse

the data to the restaurant-week level, which allows us to construct within-week measures of

volatility. Our dataset consists of 287 restaurants and spans two and a half years, from January

1, 2020 through June 28, 2022.

For a subsample of customers, we obtained (anonymized) customer-level transaction data

from January 1, 2021 through June 28, 2022.7 The subsample consists of 20,000 customers

with at least 15 orders over the period.

We supplement this data with data on website traffic obtained from SimilarWeb. The data

contains daily page views on the restaurant chain’s website, which includes the online ordering

system for delivery.

3.2 Adoption of a Dynamic Pricing Algorithm

Before implementing dynamic pricing, the price of a home delivery order was fixed at EUR

5.90. Demand for home delivery varied over time. Demand was typically higher from Friday

to Sunday than from Monday to Thursday. During weekdays, demand typically peaked around

noon (“lunch”) and late afternoon (“after work”). Despite these general patterns, demand at

any particular point of the week could vary substantially week-to-week.

As discussed in Section 2, the uniform pricing rule potentially led to substantial operational

costs. The restaurant chain maintained a capacity that could meet higher levels of demand,

yet this capacity was idle during periods of lower demand. For example, one key operational

decision was how many employees to have at each location. Employees could be an inflexible

input cost when hired on a full-time basis.

In order to address the costs associated with demand volatility, the restaurant chain adopted

a dynamic pricing algorithm. The chain used a staggered rollout in order to pilot the technology

and observe the impact of the algorithm on sales and profits. The algorithm was turned on for

an initial group of 49 restaurants on September 7, 2020. A second group of 16 was activated
7Customer-linked data is not available prior to January 1, 2021.
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on June 14, 2021, and the technology was rolled out to the remaining 58 qualifying restaurants

on November 19, 2021.8 Each group covers a distinct geographic region.

Restaurants that adopted the algorithm switched from a fixed delivery fee to one that was

updated every ten minutes. Initially, prices were allowed to vary from EUR 2.90 to 5.90

Monday-Thursday and from 2.90 to 7.90 for weekends (Friday-Sunday). In October 2021,

some restaurants increased the upper price limit to EUR 8.90 for weekends.9

3.3 Description of the Algorithm

The dynamic pricing algorithm adopted by the restaurant chain was procured from Priceff, Ltd.,

a third-party provider. Though we cannot disclose the exact calculations of the algorithm, we

can describe the features of the algorithm qualitatively.10

The pricing algorithm updates prices in response to residual demand. A seller (in this case,

an individual restaurant) sets a target quantity to sell within a set timeframe. If quantity de-

manded is too low, the algorithm will decrease the price, and vice versa if quantity demanded

is too high. The algorithm makes these judgments based on recent purchases (including those

within the previous ten minutes), along with historical purchases, previous price changes, char-

acteristics of the data sample, and other factors. The algorithm forms a prediction of how

demand will evolve in order to meet the target, and it adjust the price accordingly. The pricing

algorithm has the capability to evolve over time. Notably, the algorithm does not directly take

into account the prices of competing restaurants, which is a key consideration in studies of

algorithmic competition (Calvano et al., 2020; Brown and MacKay, 2021).

In principle, the algorithm allows for restaurant-specific dynamic pricing. However, restau-

rants in the same city were put into the same pricing zones, as the restaurant chain did not want

customers in the same city to see different prices. The algorithm pooled data across restaurants

within the same zone.

Figure 1 provides examples of the time series delivery fees as set by the algorithm for one

week of January 2022 and two different pricing zones. The figure illustrates that there is sub-

stantial within-day variation in the delivery fee. On average, higher delivery fees are realized

on the weekend. Within a day, there are typical times with higher fees, though there is variation

in fees during these periods across weeks and restaurants.

The rollout of the algorithm was transparent to affected consumers that visited the restau-

rant’s website. Before placing an order, a consumer had to enter a delivery address. If the

consumer was in a zone with dynamic pricing, the consumer saw a statement that delivery
8A handful restaurants did not activate the technology on these exact dates; we ignore them in our analysis.
9In April 2022, three restaurants located at skiing resorts further increased the upper limit to EUR 11.90. These

restaurants are excluded from our analysis sample.
10The algorithm builds on Ekholm (2019), which presents a “Method, system, and computer program product for

dynamically pricing perishable goods.”
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Figure 1: Example of Algorithm Prices
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Notes: Figure displays the time series of delivery fees for two different pricing zones over a single week in January
2022. Delivery fees are updated every 10 minutes by the pricing algorithm and represent roughly 15 percent of the
total transaction price.

fees could change every 10 minutes, the range of possible fees, and the current fees in their

location.11

4 How Do Consumers Respond to Dynamic Pricing?

In this section, we explore how consumers respond to dynamic pricing using high-frequency

transaction data. First, we examine how the algorithm affected consumer purchasing patterns

across days and hours within a week. Second, we look at evidence for higher-frequency sub-

stitution by examining changes in order volume in short intervals around the timing of price

changes. Third, we look at how website traffic volume changed after the implementation of

the algorithm. The evidence suggests the consumers strategically time their purchases by shift-

ing purchases across days and hours of hte week, and also by making decisions at a very high

frequency (within ten minutes).

4.1 Substitution Across Hours of the Week

We examine how dynamic pricing affects the distribution of customer purchases across the 65

typical hours of business for the restaurants in our sample: 11 AM to 8 PM from Sunday to
11During the sample, the restaurant chain engaged in occasional promotional periods with free or steeply dis-

counted delivery. These promotions affected all restaurants, and we exclude the affected weeks from our analysis.
Promotional activity did not vary materially across restaurants.
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Figure 2: Distribution of Orders With and Without Dynamic Pricing

(a) Group B
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(b) Group C
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Notes: Figure displays the density of orders by hour of the week. We index each hour of the week by the mean
2022 expected fees across all groups. The black line indicates the period prior to dynamic pricing, and the red line
indicates the period after dynamic pricing.

Thursday, and 11 AM to 9 PM on Friday and Saturday. To help with exposition, we index these

hours by the average expected fee paid in each hour of the week in 2022, across all restaurants

in groups A, B, and C. Values greater than 5.90 indicate that the average expected fee in that

hour (e.g., 7 PM on Saturday) increased as a result of dynamic pricing, whereas values less than

5.90 indicate an average decrease. We use this approach to show whether changes in purchase

patterns can be predicted by the change in fees.

For this analysis, we use the subsample of customer-linked transactions to track changes

in individual customer behavior. These data cover January 1, 2021 through June 28, 2022.

Over this period, only group B and group C realized a change to dynamic pricing. Our analysis

focuses on customers who ordered from restaurants in those two groups.

In Figure 2, we plot the estimated density of orders before and after the adoption of dynamic

pricing. For each group, we use the date that dynamic pricing was implemented. Panels (a)

and (b) in the figure indicate that, for both groups B and C, we see an increase in density in the

low-fee hours of the week and a reduction in density in the high-fee hours of the week after the

implementation of dynamic pricing. Because consumers did not have hour-specific variation in

fees prior to dynamic pricing, this indicates that consumers shifted the times of their purchases

in response to the time variation in fees.

We run placebo checks to see if this behavior might be instead explained by broader shifts

in ordering patterns. First, we look at group A before and after the implementation of dynamic

pricing by group B. Since group A customers were exposed before and after the implementation

by group B, we should not anticipate any distributional shift for group A customers over this

period. Similarly, we look at group B customers before and after the implementation of dynamic
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Figure 3: Change in Customer Behavior Across Hours of the Week
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Notes: Figure displays the mean 2022 expected fees for group B (solid line) and group C (dashed line) using the
actual distribution of transactions. We use data on customer-linked transactions for a subset of customers. For each
transaction, we define the expected fee based on the hour of the week using the average fee for each hour in 2022.
Changes over time indicate changes in the distribution of purchases within a week. The vertical lines indicate the
staggered adoption dates for the pricing algorithm.

pricing by group C. We do not find large differences in the distribution of orders across these

periods. In particular, in contrast to delivery orders, we do not see large changes in the low-fee

and high-fee hours. We provide the plots in Figure B.1 in the Appendix.

We also run placebo checks to see if this can be explained by substitution by customers

to another channel at the restaurant, i.e., opting to pick up their order or eat at the restau-

rant rather than ordering delivery. For these customers, we also have orders through these

other channels. As above, we compare the density of ordering patterns before and after the

adoption of dynamic pricing for groups B and C, but we look at non-delivery orders. We see

no meaningful differences in the distribution of non-delivery orders across hours of the week

around dynamic pricing. This provides further evidence that the change in patterns we observe

is due to intertemporal substitution by customers. We show these results in Figure B.2 in the

Appendix.

Figure 3 indicates the change in consumer behavior in the time series. The figure displays

the mean expected fee, based on the average fees from 2022, for groups B and C.12 The figure

provides the hypothetical fees that customers would have paid if they had paid the average fee

attributable to that hour of the week in 2022. Changes in the lines from week-to-week indicate

changes in behavior, as the expected fee distribution across the week is stable by construction.

After the rollout of dynamic pricing (week 78 in the figure), customers in group B shift their
12We drop weeks with zero or low-fee promotions
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Figure 4: Transition Probabilities Across Days and Hours, Before and After Dynamic Pricing
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Notes: Figure indicates the transition dynamics from one purchase to the next for individual consumers. Panel (a)
provides the transition matrix by day of the week before dynamic pricing, and panel (c) provides the corresponding
matrix by hour of the day. Panels (b) and (d) provide the percent change in transition probabilities after dynamic
pricing.

purchases in such a way that the expected fee paid is lower. The expected fee is lower relative

to group C, until customers in the latter group are exposed to dynamic pricing (week 100 in

the figure). After group C customers are exposed to dynamic pricing, the expected fee drops to

match that paid by customers in group B.

These patterns indicate that consumers shift their purchases across hours of the week in re-

sponse to changes in delivery fees. The shifts are toward hours that have on average lower fees.

For this subset of customers, the data indicate that these customers paid approximately EUR

0.62 less in fees after the rollout of dynamic pricing. Of this, about EUR 0.17 (std. err. 0.007)

is attributable to a shift in purchases across hours of the week using the 2022 expected fee. To

that extent that customers have more precise information about fees, the savings obtained by

strategic timing may be higher.

We next look at within-customer changes in purchasing behavior after the rollout of dynamic
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pricing. For each customer, we obtain the day and time of each order and the day and time of

that same customer’s subsequent order. From this data, we construct transition matrices that

capture the rates at which customers shift from one day to another or from one hour to another

for their next purchase. We construct separate matrices before and after the rollout of dynamic

pricing to indicate whether it manifested a change in purchasing patterns among individuals.

Panel (a) of Figure 4 displays the transition matrix for days of the week before the adoption

of dynamic pricing. The values are the shares of consumers that made a purchase from day

indicated by a row that make their next purchase on day given by a column. Thus, taking

sums across columns for a single row yields 1. The matrix indicates that consumers placing an

order Friday, Saturday, or Sunday were most likely to make their next order on the same day.

Customers ordering Monday through Thursday, on the other hand, were most likely to make

their next order on a Friday, though at somewhat lower rates.

Panel (b) indicates the percent change in these shares after the introduction of dynamic

pricing. The use of dynamic pricing reduced the relative likelihood of ordering on the weekend

and increased the relatively likelihood of ordering on Monday and Tuesday, regardless of what

day the customer previously placed their order. This indicates that customers were more likely

to switch between weekends and weekdays after the rollout of dynamic pricing.

Panels (c) and (d) of Figure 4 display a similar pattern in terms in hours of the day. Panel (c)

shows that, before dynamic pricing, customers displayed persistent time preferences for placing

orders. The next orders was most likely to occur in the same hour of the day as the prior order.

Panel (d) shows that dynamic pricing tended to reduce this dependence, reducing the likelihood

that customer’s next order occurred during dinner times (4 PM to 7 PM) and increasing the rate

of orders earlier in the day. These patterns correlate with a shift in purchases toward lower fees.

Overall, these patterns show that consumers shifted their purchasing behaviors as a result of

dynamic pricing in ways that theory would predict. Consumers reduced the share of purchases

in hours when fees went up and increased the share of purchases in hours where fees went

down. Moreover, these changes are reflected within the purchasing patterns of individual con-

sumers over time, indicating the role of intertemporal substitution in explaining the demand

response.

4.2 High-Frequency Strategic Timing

The previous analysis indicated that consumers responded to the average price changes oc-

curring across hours of the week. The algorithm in practice changed fees every 10 minutes,

yielding different prices in the same hour across weeks and different prices even within an

hour. Thus, for periods with typically high demand that realize an idiosyncratic low demand

shock, the algorithm can adjust, lowering fees to generate higher quantity.

A high-level view of the data suggests that this is an important aspect to the algorithm. Fig-

ure 5 shows quantities, prices, and within-hour volatility across restaurants and weeks for two
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Figure 5: Pre-Post Impact by Hour of Week
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Notes: Figure displays the pre-period (dashed line) and post-period values (solid line) for outcomes across all treated
restaurants in our sample. The x-axis corresponds to the 65 typical business hours of the week. These hours are
sorted by mean quantities from low-to-high. Panel (a) plots the transactions, panel (b) plots the delivery fees, and
panel (c) plots the within-hour volatility, which is defined as the coefficient of variation across the six 10-minute
blocks within each restaurant-week-hour.

time periods. The “pre” period represents January through August 2020, before any restaurant

had dynamic pricing. The “post” period corresponds to January through June 2022, when all

of the restaurants in our sample had dynamic pricing. We aggregate across restaurants in all

three groups for this sample.

On the x-axis, the 65 hours of business are sorted by the mean transaction volume in the

pre period (2020). The pre-period values serve as a proxy for demand; given no per-period

variation in prices, moving toward the right indicates that demand was higher during those

hours of the week (e.g., Friday and Saturday nights). Post-period values are plotted with a

solid black line, and pre-period values are plotted with a gray dashed line.
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Panel (a) shows that the mean delivery fees were flat across hours of the week in the pre

period.13 Dynamic pricing, as shown by the post-period values (solid line), decreased prices

during lower-demand periods and increased prices on average during higher-demand periods.

On average, prices fell.

Panel (b) shows that, by 2022, quantities increased for every hour of the week. Thus, an

increase in average fees occurring during peak hours did not correspond to a long-run decline

in quantities. Some of the growth in transactions was likely due to overall restaurant growth

and recovery from the initial measures of the COVID-19 pandemic. Another factor was that,

even during hours when prices increased on average, the algorithm was able to generate lower

prices during high-frequency windows when demand was idiosyncratically low. As indicated by

Figure 1, the price often fell below 4.00, even during peak times. This high-frequency response

of prices allowed for additional transactions to occur during high demand periods.

Panel (c) provides more direct evidence of a demand-smoothing effect. In the post period,

within-hour volatility fell for every hour of the week. Within-hour volatility is constructed

as follows: we partition each hour into six 10-minute blocks, and calculate the number of

transactions in each block. We then calculate the within-hour coefficient of variation (standard

deviation divided by the mean) for each of the 65 hours by restaurant-week. The reduction

in volatility during high-demand periods suggests that the growth in transactions during those

periods was facilitated by high-frequency variation in prices that smoothed out demand.

To test whether consumers strategically time their purchases within an hour, we exploit

the fact that the algorithm generates potential changes every 10 minutes. On average, the

algorithm increases prices during periods of higher demand. Thus, as can be seen in panels

(a) and (b) of Figure 5, prices and quantities are positively correlated in the data. However, if

some consumers are strategically timing their purchases, we could observe a discrete change

in behavior around a change in price. All else equal, we might expect that strategic consumers

are more likely to purchase immediately after a price decrease than immediately after a price

increase.

We divide our data into 10-minute periods around every potential price change (e.g., 10:55

to 11:05). We then measure the number of transactions occurring in the 5 minutes prior to an

opportunity to change prices (10:55 to 11:00) and the 5 minutes afterward (11:00 to 11:05),

as well as the delivery fees. We normalize the mean number of transactions to 100. We then

calculate the mean number of transactions occurring for a given delivery fee (e.g., EUR 4.90)

based on whether the fee in the preceding 5 minutes (10:55 to 11:00) was higher, lower, or the

same value. If demand were completely static, the fee in the previous time period should have

no effect on the quantity demanded in the current period. If consumers were not strategic, then,

based on the objective of the pricing algorithm, we would instead expect that price increases

would correspond to higher quantity demanded. If consumers are strategic, this could mitigate
13The mean value does not equal 5.90 exactly because of promotional periods.
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Figure 6: High-Frequency Shifts in Demand
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Notes: Figure displays empirical shifts in the demand curve following changes in fees. This is calculated as the
excess change in quantity for the 5-minute period after each price change opportunity relative to the quantity in
the 5-minute period prior to each price opportunity. The data are presented by the current delivery fee (y-axis) and
are relative to the (fee-specific) change in quantity after no price change. The solid line plots the excess change
in quantity following price decreases, and the dashed line plots the excess change in quantity following a price
increase.

the overall price-quantity correlation generated by the algorithm, or even reverse the sign when

looking at a small enough window.

For each delivery fee from 2.90 to 7.90, we calculate the change in transactions before and

after a price change opportunity when no price change actually occurs. We then calculate the

excess change in quantity as the change in quantities relative to these fee-specific values. Figure

6 plots the results. The solid line shows that, for any current price level, the excess change

in quantity is positive after a delivery fee decrease. In other words, more consumers make

purchases at identical prices when the price 5 minutes prior was higher. Likewise, the dashed

line shows that consumers make fewer purchases at a given price when the price immediately

prior was lower. The magnitudes are economically significant: quantities increase by roughly

20 percent of the mean rate of transactions after a price decrease and fall by roughly 60 percent

of the mean rate following a price increase. Note that differential responses to increases and

decreases should not be interpreted as a purely asymmetric behavioral response. They reflect,

in part, that the average fee decrease may be smaller than the average fee increase.

We use these data to calculate the high-frequency price elasticity. We regress the log change

in quantity on the log change in prices for each 10-minute block in the data. We obtain an elas-

ticity of −13.0 (std. err. 0.791), indicating that consumers are very sensitive to high frequency
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Figure 7: Website Activity Increases with Algorithm Adoption
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Notes: Figure displays the daily website traffic for Mondays (solid line) and Saturdays (dashed line), which are the
days with the lowest and the highest demand, respectively. The y-axis captures log page views. The vertical lines
indicate the staggered adoption dates for the pricing algorithm. By the end of the sample, all eligible restaurants
had dynamic pricing.

changes.14

This evidence is consistent with strategic timing by consumers. Within 10-minute intervals,

consumers appear to be less likely to purchase when prices have increased and more likely to

purchase when prices have decrease, even when these consumers face the same prices. We note

that the high-frequency elasticity may be quite different from a demand elasticity measured at

a lower frequency. For example, consumers may be more willing to “shop” for a 30-minute

period than they are to substitute away from the restaurant entirely.

4.3 Website Traffic

If consumers are strategically timing their purchases, we should expect their behavior to change

after the implementation of dynamic pricing. Before, prices were fixed over the course of the

week, and there was no opportunity to take advantage of variation in prices.

We use supplementary data on website traffic to look at changes in consumer behavior after

the adoption of the algorithm. Specifically, we obtain daily page views on the website (which

includes the online ordering system). We then split the data by the day of the week. Here,

we focus on Mondays and Saturdays, which are the days with the lowest and highest demand,

respectively.
14We obtain a delivery fee elasticity of −1.65 (std. err. 0.097). We find some differences in elasticities after

positive (−11.3) and negative (−14.8) price changes.
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Figure 7 plots the log daily page views for each week on Mondays (solid line) and Saturdays

(dashed line) from July 2019 through July 2022. The logged values are indexed to the mean

log page views across all days of the week from July 2019 through August 2020, before dynamic

pricing was adopted by any restaurant. Prior to dynamic pricing, website traffic on Mondays

was, on average, 0.40 log points below the mean, while traffic on Saturdays was 0.48 log

points above the mean. Across days of the week, website traffic is positively correlated with the

number of delivery orders.

The vertical black lines in the figure indicate the staggered rollout dates for dynamic pricing.

As more restaurants gained access to dynamic pricing, website traffic overall increased, and the

gap between Monday and Saturday traffic decreased. By the end of the sample, Monday and

Saturday traffic had nearly converged. In 2022, Monday traffic averaged 0.55 log points above

the per-period mean (an increase of 0.95 log points), and Saturday traffic had an average log

value of 0.78 (an increase of 0.30).

Overall, website traffic increased substantially after the adoption of dynamic pricing. The

observed patterns indicate that consumers do engage in strategic timing. The increase in web-

site traffic was greater than the increase in transactions, i.e., consumers spend more time shop-

ping on the website without purchasing. Given the previous findings, this suggests that the

website activity is due to consumers looking for lower prices. Moreover, the substantial in-

crease in website traffic during lower-demand days indicates that consumers are timing their

purchases across days. Overall, this analysis provides additional evidence for intertemporal

substitution by consumers.

5 Impacts of Dynamic Pricing: Empirical Strategy

5.1 Overview

To evaluate the impact of the adoption of a dynamic pricing algorithm on sales and demand,

we exploit the fact that the technology was adopted by different restaurants at different times.

The staggered rollout allows us to compare restaurants with dynamic pricing to those without

it at the same point in time.

To account for heterogeneity across groups based on adoption timing, we use a matching

estimator. We match each “treated” restaurant to similar restaurants that adopted dynamic

pricing at a different period. Importantly, we determine similarity between restaurants based

on sales patterns during periods when all restaurants use the same technology. Specifically, we

make use of both data from 2020, prior to the adoption of dynamic pricing by any restaurant,

and data from 2022, after all restaurants use dynamic pricing. We use the staggered rollout

over the two-year window between these periods to evaluate the impact of dynamic pricing.
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5.2 Matching Procedure

To measure changes in outcomes due to dynamic pricing, we exploit the staggered rollout of

the algorithm and match restaurants to other restaurants that adopt the algorithm at a differ-

ent period but have similar revenue patterns during the matching windows. We calculate the

impact of dynamic pricing by examining the window where one group (“treated”) has dynamic

pricing but the matched group (“control”) does not.

For each treated restaurant, we use weekly sales patterns to identify the most comparable

control restaurants. Specifically, we use sales from periods July 6, 2020 through September

6, 2020 (nine weeks) and January 10, 2022 through June 27, 2022 (23 weeks). The first

window ends immediately before the adoption of dynamic pricing by the first group of restau-

rants. We use a shorter window in 2020 due to interruptions to business by the COVID-19

pandemic, though, as seen in later figures, our matched controls track the treated groups fairly

well throughout the first half of 2020. Our results are not sensitive to the particular matching

window we employ.

Within each window, we calculate the mean log weekly revenues and the deviation from

each year-specific mean. This yields two means and 32 weekly “seasonality” matching variables.

For each treated restaurant and potential control, we calculate the difference between each of

these variables. To account for idiosyncratic closures, we drop two seasonality variables with

the largest difference between each potential pair. We then calculate distance as the sum of

squared differences across the remaining 32 matching variables, where we place equal weights

on seasonality and the means (i.e., 0.25 on the 2020 mean, 0.25 on the 2022 mean, and 0.50

on week-to-week variation from the means). We use this distance to select the three nearest

neighbors for each treated restaurant, allowing control restaurants to be matched to multiple

treated restaurants.

5.3 Measuring Effects

We use mached controls from the nearest-neighbor procedure to construct counterfactual out-

comes. Let Yit denote an outcome of interest (e.g., revenue) for restaurant i in period t, where

t = 0 corresponds to the week that dynamic pricing was implemented. Let Yit(1) indicate the

outcome with dynamic pricing and Ŷit(0) indicate estimated counterfactual without dynamic

pricing. Given Yit(1) and Ŷit(0), we can obtain a restaurant-specific estimate of the effect of

dynamic pricing on the outcome, ∆̂Y it:

∆̂Y it = Yit(1)− Ŷit(0). (3)

We observe the outcome Yit(1) for the restaurants in our data. The counterfactual out-

come, Ŷit(0), is unobserved and is calculated as follows. For each treated restaurant i, we select

three nearest neighbors using the above procedure. We calculate the counterfactual outcome,
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Ŷit(0), as the average value of Yit(0) across the three matched control restaurants. This pro-

vides a restaurant-specific estimated effect for each period. In contrast to typical “difference-

in-differences” specifications, we do not normalize Ŷit(0) to zero out pre-period differences.

Instead, we report the unadjusted means, which are fairly close in most cases.

To quantify the average impact of dynamic pricing across restaurants, we take the average

of the restaurant-specific treatment effects:

τ̂ t =
1

Ng

∑
i

∆̂Y it, (4)

where Ng is the number of restaurants in the treatment group. We plot the mean values of

Yit(1), Ŷit(0), and τ̂ t to diplay the trends in the data before and after the adoption of dynamic

pricing.

To report overall effects, we use the regression specification

Yit = βait + δi + γt + εit (5)

where ait is an indicator of whether or not restaurant i has dynamic pricing in period t, and δi
and γt provide restaurant and period fixed effects, respectively. The parameter β provides an

estimate for the effect of treatment on the treated for a particular outcome of interest. We use

a weighted regression where the weights are equal to 1 for each treated restaurant. For control

restaurants, weights are proportional to the number of times it is matched to a treated restau-

rant and are scaled so that treated and control groups receive equal total weight. Thus, we use

nearest-neighbor matching to assign weights for the regression specification. Restaurants that

are not similar to the treated restaurants are assigned a weight of zero.

We note that this “two-way fixed effects” design that we employ has come under scrutiny

when applied to settings with variation in treatment timing (see, e.g., Goodman-Bacon, 2021;

Baker, Larcker and Wang, 2022). We report the matching event-study estimates based on equa-

tion (4), and these estimates suggest that the effects of algorithms are fairly constant over time,

mitigating concerns of potential bias as described by Baker, Larcker and Wang (2022). Sec-

ond, we exploit the discrete timing of the staggered rollout to generate distinct subsamples for

analysis, as we describe below.

To summarize the response of demand volatility to time-varying prices, we define and es-

timate a volatility semi-elasticity (VSE). Let VQ denote the within-week coefficient of variation

for quantities, which we calculate separately for each restaurant-week as the standard deviation

of the number of transactions in each hour divided by the mean. Let VP denote the within-week

coefficient of variation in prices faced by consumers. The VSE is given by:

V SE =
dlnVQ
dVP

. (6)
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Table 1: Summary Statistics

Variable Group A Group B Group C Matched Controls: A Matched Controls: B

Indexed Revenue 100.0 99.4 86.0 103.7 98.8
Indexed Revenue, Jul–Sep 2020 72.5 69.1 50.4 68.2 67.1
Revenue per Transaction 33.35 32.21 32.07 31.41 31.58
Delivery Fees per Transaction 5.06 5.32 4.73 4.67 4.67
Share of Revenue on Fri–Sun 0.62 0.61 0.61 0.61 0.60
Number of Restaurants 49 16 57 44 35

Notes: Table displays the summary statistics for the three groups in our analysis sample. Each group is determined by
the date they implemented the dynamic pricing algorithm. Reported statistics are the mean across restaurants and
weeks. The last two columns provide statistics for the matched control groups, which are sampled with replacement
from group C.

This measure reflects the causal response of demand volatility to an increase in the time-series

variation of prices.15 As with analogous measures like demand elasticities, the parameter re-

flects the specific scope of the measurement. For example, the weekly VSE likely has a different

value than the daily VSE. The parameter also reflects the specific nature of the variation in

prices. In our context, the estimate reflects how prices are updated by the dynamic pricing

algorithm, which likely yields a different demand response than would, say, the introduction of

random price variation of an equivalent magnitude. The VSE can be interpreted as how much

a marginal increase in coefficient of variation for prices affects the coefficient of variation for

transactions, while holding fixed the rules for determining price variation.

5.4 Exploiting the Staggered Rollout

The staggered rollout consisted of three distinct phases: an initial group of restaurants (group

A) that adopted dynamic pricing in September 2020, a second group of restaurants (group B)

that adopted in June 2021, and the remaining restaurants (group C) that adopted in November

2021. We define restaurants that belong to in groups A and B as belonging to the treated group

of restaurants, and restaurants that belong to group C as controls.

We exclude restaurants that (a) did not offer delivery during our sample period, (b) started

the pricing algorithm outside of the three key dates identified above, and (c) had 4 or more

weeks with delivery revenues less than EUR 100 in our sample period. After these filters, we

retain 122 restaurants: 65 in the treated group (49 in A and 16 in B), and 57 in the control

group.

Table 1 provides summary statistics for the three groups. All statistics reflect the mean

weekly values for 2022 (January through June), except for the one row which reports mean

weekly revenues from July through September 2020. To mask exact revenue figures, we have
15We use a semi-elasticity rather than an elasticity because, in many cases, the initial value of VP is 0 and any

percent change from 0 would be undefined.
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indexed the values so that the group A mean in 2022 is equal to 100.

Restaurants in group A have, on average, similar 2022 revenues as those in group B. The av-

erage restaurant in group C is fourteen percent smaller, in terms of revenues, than the other two

groups. All groups have seen revenue growth since 2020. In percentage terms, revenue growth

has been faster for group C than groups A and B. We attempt to mitigate these differences by

using both 2020 and 2022 sales data in our matching procedure. In terms of other statistics,

all groups look similar in 2022. The average transaction is roughly EUR 32 in revenue, with

15 percent of revenues coming from delivery fees (EUR 5 per transaction). Three-fifths of the

revenue comes from the weekend period of Friday through Sunday.

The last two columns report summary statistics for the matched control restaurants, which

are selected from group C. The matched controls are much more similar to the treated groups.

The fifth column shows that the matched control revenues for group B are very similar to the

mean group B (indexed) values of 99 in 2022 and 69 in 2000. Likewise, the mean revenues in

the matched controls for group A are 68 in 2020 and 104 in 2022, which are much closer to

the group A mean than the group C overall average. Despite improving the match, the matched

controls for A still realize faster revenue growth than group A. This shows up in some of our

results but does not seem to impact our estimated coefficients much, perhaps because the key

identifying variation is in the middle of the sample. Moreover, we obtain similar results when

using group B and its matched controls only.

For our regression analysis, we restrict the sample to range from September 7, 2020 through

June 26, 2022. We do this for two reasons: first, after this restriction, group A has dynamic

pricing for the entire sample, and the only identifying variation within the matched cohort

occurs when C adopts dynamic pricing in November 2021. Thus, this restriction creates a

subsample with a single treatment timing, eliminating concerns from staggered timing in two-

way fixed effects models. For robustness, we report the group A and group B effects separately

in addition to reporting the pooled estimates. The second reason is that the onset of the COVID-

19 pandemic created some disruptions in the business, which we wish to avoid when reporting

overall effects.

6 Impacts of Dynamic Pricing: Results

6.1 Price Effects

First, we evaluate the effects on delivery fees and overall prices. Panel (a) of Figure 8 plots the

mean delivery fee by group in our data. After the adoption of dynamic pricing, average delivery

fees in most weeks were lower than the uniform fee charged by restaurants without dynamic

pricing. This was in part by design, as the Monday-Thursday fee could only go lower than the

uniform fee, and the Friday-Sunday fee was capped at a maximum value of EUR 7.90 to 8.90.

The two large downward spikes in 2022 reflect promotional activity by the restaurant chain;
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Figure 8: Delivery Fees by Treatment Group
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Notes: Figure displays statistics of delivery fees by treatment group over the sample period. Panel (a) displays the
weekly mean, and panel (b) displays the average within-week standard deviation across restaurants in each group.
Gaps in the time series correspond to promotional periods with zero delivery fees across all restaurants.

during these periods, the average delivery fee chosen by the algorithm was temporarily set to

be much lower.16

Panel (b) plots the average within-week standard deviation of fees across restaurants within

each treatment group. Prior to the adoption of dynamic pricing, this is exactly zero. Immedi-

ately after the adoption of dynamic pricing, the standard deviation of fees within a week jumps

to nearly EUR 2.00, and typically fluctuates between EUR 1.00 and 2.00 over the rest of the

sample. The mean weekly standard deviation of fees for restaurants using dynamic pricing is

1.60.

Since there are independent pricing zones within each group, the above figure masks a good

deal of within-group heterogeneity. In Appendix Figure B.3, we provide a version of the figure

at the restaurant level, instead of the group level. The figure illustrates that the within-group

heterogeneity is often larger than the across-group heterogeneity.

Table 2 summarizes the overall effect on prices following regression equation (5). Observa-

tions are at the restaurant-week level. Columns (1)-(3) display the results when the dependent

variable is the mean log transaction price, including delivery fees. Columns (4)-(6) show the

within-week standard deviation of log transaction price. As described in the previous section,

we show results separately for the pooled treatment and for groups A and B separately. Columns

(1) and (4) correspond to the pooled treatment across groups A and B. Columns (2) and (5)

correspond to group A and columns (3) and (6) to group B.

Overall, we estimate that the algorithm led to a 5 percent decrease in average transaction

prices, while the standard deviation of log prices increased by 0.03. We find that our estimates

are similar across treatment groups and highly significant. As describe above, a reduction in

16In addition, gaps in the time series before 2022 reflect promotional periods of zero delivery fees across all
restaurants.
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Table 2: Price Effects of the Dynamic Pricing Algorithm

(1) (2) (3) (4) (5) (6)
Mean Mean Mean Std. Dev. Std. Dev. Std. Dev.

Post × Dynamic Pricing
-0.049***
(0.004)

-0.051***
(0.005)

-0.060***
(0.004)

0.032***
(0.004)

0.032***
(0.005)

0.044***
(0.004)

Treatment Group Pooled A B Pooled A B
Period FEs Yes Yes Yes Yes Yes Yes
Restaurant FEs Yes Yes Yes Yes Yes Yes
Outcome Mean 3.393 3.395 3.384 0.484 0.485 0.480
Observations 10,404 8,640 4,735 10,404 8,640 4,735

Notes: Table displays the coefficient estimates for regressions of price outcomes on an indicator for dynamic pricing,
restaurant fixed effects, and time period fixed effects. The dependent variable in the first three columns is the
(mean) log transaction price. The dependent variable in the last three columns is the standard deviation of the
log transaction price. Observations are at the restaurant-week level. Standard errors are in parentheses and are
clustered at the restaurant level. Significance levels: ∗ 10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent.

prices from Monday through Thursday was anticipated, because the delivery fee could only fall

relative to the uniform fee. Average transaction prices fell by 8.3 percent during these days.17

Over the weekend, fees could go higher than the uniform fee, but we find that average delivery

fees also fall for this group, ranging from 2.1 to 2.7 percent, depending on the subsample. The

fact that we find this change when focusing on only on weekend days points to the fact that

within-day demand variation is an important consideration for the algorithm.

6.2 Effects on Demand Volatility

Next, we examine the impacts of the pricing technology on demand volatility. For this analysis,

we employ two measures of variation in quantity demanded. First, we construct a within-week

volatility measure as the standard deviation of the number of transactions per hour divided by

the mean number of transactions within each week.18 Second, we use the share of transactions

within each week that occur over the weekend (Friday-Sunday), which is the period of high

demand.

Figure 9 presents the time series of the means for each outcome for group B restaurants

and matched controls. Panel (a) plots the within-week coefficient of variation in number of

transactions, which has declined since the introduction of dynamic pricing. Prior the adoption

of dynamic pricing, and also after all restaurants employed dynamic pricing, volatility for group

B (black line) is similar to the volatility for its matched controls (red dashed line). The period

where group B employs dynamic pricing but its controls do not is bracketed by vertical lines.

During this period, volatility was on average lower than its matched controls. After the adoption
17Regression results for weekdays versus weekends separately are reported in Appendix Table B.1.
18For this measure, we use only the hours between 12 PM and 8 PM across restaurants. Some restaurants are

open outside of these windows, but this constitutes a low portion of transactions and revenues.
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Figure 9: Dynamic Pricing and Demand Volatility
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Notes: Figure displays the within-group means for our measures of volatility. Panel (a) plots the within-week
coefficient of variation in number of transactions. Panel (c) plots the share of transactions that occur between
Friday and Sunday. Each panel plots group B (black line) and its matched controls (dashed red line). Panels (b)
and (d) present the differences between the two, providing a week-by-week event study estimate. The period where
group B had dynamic pricing and its controls did not is bracketed by the two vertical lines.

of dynamic pricing by the control restaurants, volatility in the matched controls fell to the level

of the group B restaurants. The difference between the two lines is plotted in panel (b). These

results indicate that demand volatility fell after the introduction of dynamic pricing, and the

reduction was similar for group B and its controls.

Panels (c) and (d) show a similar pattern. The results indicate that the relative share during

the weekend declined after the adoption of pricing algorithms, and that the decline coincided

with the particular timing of adoption for each group. The corresponding plots for group A

are presented in Appendix Figure B.4. The plots show similar decreases in volatility during the

treatment windows, though group A has higher levels of hourly volatility in the pre-adoption

and 2022 periods.19

Table 3 summarizes the overall effect on volatility following regression equation (5). As
19In these figures, the means are not normalized: to construct a “difference-in-differences” estimate one would

have to net out the difference between the vertical lines from a baseline period (e.g., January 2022 through June
2022). The means happen to be very similar for group B and its matched controls when they have the same pricing
technology.
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Table 3: Demand Volatility Effects of the Dynamic Pricing Algorithm

(1) (2) (3) (4) (5) (6)
Volatility Volatility Volatility Share Fri–Sun Share Fri–Sun Share Fri–Sun

Post × Dynamic Pricing
-0.086***
(0.016)

-0.080***
(0.017)

-0.099***
(0.021)

-0.034***
(0.006)

-0.033***
(0.008)

-0.034***
(0.008)

Treatment Group Pooled A B Pooled A B
Period FEs Yes Yes Yes Yes Yes Yes
Restaurant FEs Yes Yes Yes Yes Yes Yes
Outcome Mean 0.890 0.885 0.904 0.594 0.593 0.595
Observations 10,404 8,640 4,735 10,404 8,640 4,735

Notes: Table displays the coefficient estimates for regressions of volatility outcomes on an indicator for dynamic
pricing, restaurant fixed effects, and time period fixed effects. The dependent variable in the first three columns
is a measure of within-week volatility, calculated as the standard deviation of the number of transactions per hour
divided by the mean transactions per hour. The dependent variable in the last three columns is the share of trans-
actions occurring during the weekend (the peak demand period). Observations are at the restaurant-week level.
Standard errors are in parentheses and are clustered at the restaurant level. Significance levels: ∗ 10 percent, ∗∗ 5
percent, ∗∗∗ 1 percent.

before, observations are at the restaurant-week level, and results are reported for the pooled

treatment and for groups A and B separately. Columns (1)-(3) display the results when the

dependent variable is transaction volatility. Columns (4)-(6) report the results when the de-

pendent variable is the share of transactions on the weekend.

Overall, we estimate that the algorithm led to decrease in the within-week transaction

volatility (coefficient of variation) of −0.086. Given the outcome mean of 0.890, this repre-

sents a decline in weekly volatility of approximately ten percent. We find that our estimates are

similar across treatment groups, obtaining a coefficient of −0.080 for group A only and −0.099

for group B only. Likewise, we find a substantial decrease in the relative share of transactions

occurring on the weekend. The share declines by 3.4 percentage points. All of the estimates

are statistically significant at the 1 percent level.

Figure 10 examines the source of the relative share decline for weekend orders. Panels

(a) and (b) reflect weekday (log) transactions, and panels (c) and (d) reflect weekend (log)

transactions. The figure indicates that transactions are growing over the sample period, and

that the trend is similar for the matched controls. However, the pattern of growth appears to

be affected by the presence of the pricing algorithm. The differences between group B and its

matched controls are similar in panels (b) and (d) prior to the adoption of dynamic pricing by

group B. After adoption, group B saw a relative increase in the number of weekday transactions

and approximately no change in the number of weekend transactions. As weekend prices fell by

2.7 percent, the fact that transactions did not increase during the weekend period could reflect

that some demand was shifted to other days of the week, which had even lower prices. The

corresponding plots for group A are presented in Appendix Figure B.5. These plots show that

the matched controls are growing faster than those in group A, consistent with the summary

26



Figure 10: Dynamic Pricing and Quantity Demanded
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Notes: Figure displays the within-group means for the log weekly number of transactions. Panel (a) plots the
transactions occurring from Monday through Thursday, and Panel (c) plots transactions that occur between Friday
and Sunday. Each panel plots group B (black line) and its matched controls (dashed red line). In these panels,
values are relative to the Jul-Sep 2020 mean value for group B. Panels (b) and (d) present the differences between
the two, providing a week-by-week event study estimate. The period where group B had dynamic pricing and its
controls did not is bracketed by the two vertical lines.

stats reported in Table 1. Adjusting for the differential trends, Figure B.5 indicates an increase

in weekday transactions, and, unlike the above figures, a reduction in weekend transactions.

We summarize these effects with an estimate of the volatility semi-elasticity (VSE). We use

the values from column (1) of Table 3 to estimate the percent change in demand volatility as

dlnVQ = dVQ/VQ ≈ −0.086/0.890 = −0.097. To calculate the change in the coefficient of

variation in prices, we use the fact that the algorithm generated a mean change in the weekly

standard deviation of delivery fees of 1.60. Because this change is the direct effect of adopting

the algorithm,20 we construct the change in the coefficient of variation as this value divided by

the mean transaction price of 32.60 across the three groups of restaurants. This yields a change

in the coefficient of variation of prices of dVP = 0.049. We obtain an estimate of the VSE of
20The other components of the transaction price might also endogenously change in response to changing delivery

fees. On average, the transaction price net of fees was slightly smaller in 2022 than in 2020. This could indicate
that consumers are more willing to place smaller orders when the delivery fee is lower. However, other factors could
also be driving this change.

27



Figure 11: Dynamic Pricing and Revenues

(a) Group Means
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Notes: Figure displays the within-group means for the log weekly revenues. Panel (a) plots group B (black line) and
its matched controls (dashed red line). In this panel, values are relative to the Jul-Sep 2020 mean value for group
B. Panels (b) presents the differences between the two, providing a week-by-week event study estimate. The period
where group B had dynamic pricing and its controls did not is bracketed by the two vertical lines.

−1.96, with a standard error of 0.365. This value indicates that demand is fairly responsive to

the time-varying prices introduced by the algorithm, and it suggests that if the firm were to

allow greater variation in list prices (e.g., time-varying prices for menu items, in addition to

delivery fees), demand volatility could be reduced further.

Overall, these results suggest that the dynamic pricing algorithm led to reduced demand

volatility. These results point to the potential mechanism of shifting demand from high-demand

periods over the weekend to low-demand periods during the week, especially for restaurants

that may have been closer to their capacity constraints.

6.3 Effects on Revenues

Finally, we examine the impact of dynamic pricing on overall transactions and revenues. Figure

11 presents the corresponding group mean plots and event study differences for revenues. In

panel (a), group B is plotted with the solid black line, and its matched controls are plotted with

a red dashed line. There appears to be similar revenues before adoption and a relative increase

in revenues during the algorithm window, though there is a decent amount of week-to-week

variation. Appendix Figure B.6 provides the same plot for group A restaurants. Consistent with

our earlier findings, the revenues suggest that matched controls are growing faster than the

group A restaurants over this period. In this figure, it is hard to tease out visually whether there

is an impact on revenues due to the pricing algorithm.

Table 4 summarizes the overall effect on transactions and revenues following regression

equation 5. As before, observations are at the restaurant-week level, and results are reported

for the pooled treatment and for groups A and B separately. Columns (1)-(3) display the results

when the dependent variable is the log number of weekly transactions. The dependent variable
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Table 4: Effects of the Dynamic Pricing Algorithm on Transactions and Revenues

(1) (2) (3) (4) (5) (6)
Transactions Transactions Transactions Revenue Revenue Revenue

Post × Dynamic Pricing
0.097***
(0.028)

0.084**
(0.035)

0.092***
(0.028)

0.057**
(0.027)

0.040
(0.034)

0.051*
(0.029)

Treatment Group Pooled A B Pooled A B
Period FEs Yes Yes Yes Yes Yes Yes
Restaurant FEs Yes Yes Yes Yes Yes Yes
Observations 10,404 8,640 4,735 10,404 8,640 4,735

Notes: Table displays the coefficient estimates for regressions of price outcomes on an indicator for dynamic pricing,
restaurant fixed effects, and time period fixed effects. The dependent variable in the first three columns is the log
number of transactions. The dependent variable in the last three columns is the log revenue. Observations are at
the restaurant-week level. Standard errors are in parentheses and are clustered at the restaurant level. Significance
levels: ∗ 10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent.

in columns (4)-(6) is the log weekly revenues.

Overall, we estimate that the algorithm led to a 10 percent increase in transactions. As

discussed in the previous section, this increase was primarily driven by increases during the

weekday period. We find roughly similar coefficients for each subsample separately, and all are

significant at the 5 percent level.

The impacts on revenues are weaker. Given that transaction prices have declined, we should

expect smaller coefficients relative the impact on transactions. However, we still find positive

point estimates on the impact of dynamic pricing on revenues. We estimate a statistically sig-

nificant pooled increase in revenues of 6 percent. This estimate is less robust to the subsample

analysis than our other findings. The subsample estimates are smaller and only the group B

estimate is marginally significant.

6.4 Discussion of Intertemporal Spillovers, Operational Costs, and Welfare

Our setting provides a valuable case study to understand how dynamic pricing works in practice

and the incentives for firms to adopt such technology. The adoption of this dynamic pricing

algorithm reduced average prices, led to high-frequency price changes with large swings within

an hour, and reduced the volatility of demand.

Our findings are consistent with the presence of intertemporal spillovers in demand. In our

context, potential consumers can generate intertemporal spillovers in two ways. Consumers can

observe the current delivery fee and simply wait 10 minutes (or more) to see if the delivery fee

falls. Such price changes happen with a non-zero probability, even during peak demand hours.

On the other hand, consumers that look ahead can shift their consumption habits so that they

plan to order from this restaurant chain during periods when fees are usually lower. By reacting

to the current or expected price, both types of consumers can reduce demand volatility. This

29



can reduce costs as discussed in Section ??.

Our evidence also indicates that total transactions and revenues increased as a result of

dynamic pricing. Though we do not have measures of costs, a reduction in demand volatility

can increase profits when a restaurant faces meaningful operational costs (even with lower

average prices and lower variable profits). Using a rough back-of-the envelope calculation,

we estimate that profits increased if dynamic pricing enabled a reduction in operational costs

equivalent to 0.5 percent of revenues.21 Operational costs are a key consideration for the

partner firm in our study and a motivation for the adoption of dynamic pricing.

Finally, the fact that prices are, on average, lower, suggests that consumers might have

gained from the adoption of dynamic pricing. Whether or not consumers gain can depend on

the distribution of price changes across periods. Further, the benefits of lower prices may be

offset by the costs of ordering in another period and/or finding a substitute meal option, which

we do not attempt to measure in this paper. However, lower prices do have a first-order benefit

for consumers.

The combination of these findings—lower prices, higher output, and reduced demand

volatility—are all consistent with the possibility that the adoption of dynamic pricing increased

overall welfare. In the following section, we explore an empirical demand model that allow us

to estimate consumer welfare directly.

7 Empirical Model and Counterfactuals

In this section, we construct an empirical model of consumer demand that builds on the con-

ceptual framework from Section 2 and allows for intertemporal substitution across periods. We

use the data obtained from the staggered rollout of the dynamic pricing algorithm to estimate

the parameters of the model. The model allows us to quantify the impact to consumer surplus

while accounting for the fact that prices increased in some periods and decreased in others.

Using the model, we calculate that consumer surplus increased under dynamic pricing.

We also use the model to infer production costs. This allows us to calculate the cost savings

from dynamic pricing and conduct counterfactuals. Using the model, we simulate outcomes in

the absence of intertemporal spillovers in demand.

7.1 Demand

In this section, we construct an empirical model of consumer demand that builds on the con-

ceptual framework from Section 2 and allows for intertemporal substitution across periods. We

use the data obtained from the staggered rollout of the dynamic pricing algorithm to estimate
21For this calculation, we assume that the price levels were optimal before dynamic pricing, and we calculate

the reduction in variable profits under the assumptions of linear demand and constant marginal costs, using the
observed impacts to prices and transactions.

30



the parameters of the model. The model allows us to quantify the impact to consumer surplus

while accounting for the fact that prices increased in some periods and decreased in others.

Using the model, we calculate that consumer surplus increased under dynamic pricing.

We model an individual consumer’s decision as a discrete choice problem. A consumer i

decides to purchase from the restaurant in one of the 65 typical business hours (h) of the week.

Let each day be divided into lunch and dinner periods, and hours be grouped into each of these

14 weekly blocks (b).22

Let the utility of consumer i for a purchase in hour h be

uih = αph + ξh + ζib + (1− σ)εih (7)

where ph is the average price, ξh provides the mean utility across consumers for that hour of

the week, ζib is the idiosyncratic utility the consumer has for eating in the particular block, and

εih is the idiosyncratic utility for eating at that particular hour. Let εih be independent iden-

tically distributed type 1 extreme value (T1EV) demand shocks, and ζib follow the conjugate

distribution such that ζib+(1−σ)εih is also T1EV. The consumer purchases during the hour that

maximizes her utility, based on her preferences and the expected price charged in each hour of

the week. The consumer can also choose not to buy in a week (h = 0).

These assumptions yield the standard nested logit formulation as in Berry (1994). Rather

than choosing across products, the consumer choice here is across periods. This model has the

advantage of allowing the consumer’s decision to depend on the prices in all other periods in

a parsimonious way. Further, the nested logit model allows consumer preferences to have a

greater correlation within nests. That is, consumers may have a stronger preference to order

from a restaurant during a particular block (e.g., dinner on Friday) and thus display greater

substitutability across hours within the block. This decision is a simplification of the overall

problem facing the consumer—for example, consumer taste shocks are likely to be more closely

correlated for adjacent periods. Nevertheless, we feel that it provides a useful way to capture

the potential for intertemporal substitution at different frequencies.

Aggregating across consumers, the nested logit model yields the linear relationship

ln sh − ln s0 = αph + σ ln sh|b + ξh, (8)

where σ ∈ [0, 1) indicates the within-block correlation of idiosyncratic preference shocks and

sh|b is the conditional share for hour h within block b. When σ = 0, the standard logit model is

obtained. As σ → 1, hours within a block approach perfect substitutes.

To identify the parameters of this model, we use the exogenous variation induced by the

staggered rollout of dynamic pricing. We obtain data on the average transactions (quantities),

delivery fees, and prices for each hour of the week by restaurant group (A, B, and C) and
22Lunch is defined as 11 AM to 4 PM. Dinner is 4 PM to 8 PM Sun-Thu and 4 PM to 9 PM Fri-Sat.
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for time periods bracketed by each rollout event. Specifically, we use differences between

group A and group B over the period September 2020 through June 2021, when group A

restaurants had dynamic pricing and group B restaurants did not. We use this comparison

because the restaurants in these two groups were quite similar in pre period (January through

August 2020), as shown in Table 1.23

For each group, we construct (average) within week shares for each hour of the week over

the post period, and we construct the within-block conditional shares. To calculate shares, we

assume that the market size is four times the average total weekly quantities during the pre

period. The dataset consists of 2 (aggregated) observations for every hour of the week, one

from group A with dynamic pricing and one from group B with static pricing. We then run a

regression for equation (8) to recover the parameters of interest, while putting in hour-of-the-

week fixed effects to account for the time-varying demand, ξh.

Because we only include the post-period treatment window and use hour-of-week fixed

effects, the parameters are identified based on the quasi-experimental variation introduced by

the adoption of dynamic pricing. This shows up directly with a change in ph for group A and

indirectly through a shift in the conditional shares, sh|b. We also include an indicator for the

treatment group (group A), to account for any aggregate demand effects from dynamic pricing.

One potential threat to identification is that there may be correlation between the mag-

nitude of price changes (or conditional shares) and the demand shocks. This is substantially

mitigated by the use of fixed effects for ξh, which flexibly account for time-varying demand. The

inclusion of the control set of restaurants, group B, allows us to account for the mean demand

shock in each period, as the control restaurants realized variation in demand that was not due

to varying prices.

7.2 Production Costs

Given our demand estimates, we then employ a standard supply-side approach to recover esti-

mated marginal costs. Specifically, we assume that the algorithm sets prices across periods of

the week to maximize expected profits. Thus, the algorithm acts as a multiproduct monopolist

facing the nested logit demand system above, solving

We obtain 65 first order conditions that reflect prices, quantities, the diversion across periods

implied by the model, and marginal costs. Once demand is obtained, we can obtain the estimate

of marginal costs in each period m̂ch directly from the first-order conditions given by the period

with dynamic pricing.

We assume that variable production costs take a quadratic form:

C(q) = γ1q +
1

2
γ2q

2 + η (9)

23Employing nearest-neighbor matching would, in principle, allow us to make group C a better comparison as
well. We currently do not have the use of the matched data at the hourly level.
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Table 5: Consumer Demand Model Estimates

(1) (2)
Coefficient Logit Nested Logit

Price (α)
-0.061***
(0.008)

-0.059***
(0.007)

Nest (σ)
0.898***
(0.148)

Group A Indicator
0.053***
(0.012)

0.054***
(0.010)

Own-Price Elasticity -2.02 -15.38
Block Elasticity -1.92

Hour-of-Week FEs Yes Yes
R2 (Within) 0.727 0.828
R2 0.993 0.996
Observations 130 130

Notes: Table displays the coefficient estimates for the discrete choice demand specification. Column (1) corresponds
to a logit model and column (2) corresponds to a nested logit model. Standard errors are in parentheses. Signifi-
cance levels: ∗ 10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent.

so that C(0) = 0 and marginal costs may be increasing with quantities. We estimate the param-

eters of the cost function directly using the obtained marginal costs estimates with the following

regression equation:

m̂ch = γ1 + γ2qh + η̃. (10)

Given the estimated cost function, we then construct estimated costs when uniform pricing was

employed instead. In the uniform pricing regime, prices are not assumed to optimally reflect

marginal costs on an hour-by-hour basis.

7.3 Results

Table 5 displays the estimated demand results. Column (1) reports a standard logit regression

(without including ln sh|g, and column (2) reports the nested logit estimates. The estimated

parameter values are reasonable, and the model has a very good fit. The within R2 is 0.828

for the nested logit model, compared to 0.727 for the standard logit. Overall, the parsimonious

model can predict nearly all of the variation in the data. We recover the time-varying demand

shocks that rationalize the shares, which report in Figure B.7 in the Appendix.

The price coefficient does not change much from the logit to the nested logit, but the nesting

parameter is economically large (0.9). This indicates that there is a good deal of correlation in

idiosyncratic preferences across hours within a block. This translates to very elastic demand:

for the nested logit model, we obtain an own-price elasticity of −15.4. This can be reconciled

to the (smaller) logit elasticity with an appropriate level of aggregation. When aggregating to
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the block level, we obtain an elasticity of −1.92, similar to the logit elasticity of −2.02. In other

words, the model indicates that consumers are very elastic to relative price changes within a

block, but they much less likely to substitute out of a block if the prices for every hour in the

block increase.

Thus, consistent with our earlier reduced-form findings, the estimates from the model indi-

cate a high degree of consumer substitution across relatively fine time intervals. In this case,

our data permit us to evaluate the substitution across hours within the same meal block. Our

estimated elasticity of −15 is similar to the elasticity of −13 we found in Section 4. Though

these elasticities reflect different margins and different prices (high-frequency realized changes

in Section 4, expected prices in this section), both findings reflect the fact that consumers may

strategically time purchases at high frequencies. Demand models that do not account for this

(e.g., the standard logit above) may fail to capture the degree of consumer response to a given

price change.

The estimated demand model also enables us to calculate consumer surplus. Though aver-

age prices fell, prices increased during high demand periods, where consumer surplus had been

highest. The nested logit model allows us to aggregate welfare effects across periods while ac-

counting for differences in demand and prices. Using a modified version of the Small and Rosen

(1981) formula to account for the nesting structure, our estimates indicate that consumer wel-

fare is higher under the dynamic pricing regime. The increase in consumer surplus is equal to

1.5 percent of baseline revenue.

We estimate a production costs function with increasing marginal costs, γ2 > 0.24 Our

estimates imply that variable production costs fell by 2.8 percent as a result of dynamic pricing.

Overall, the model implies that variable profits increased by 1.1 percent.

In estimation, we do not make use of the firm’s choice of delivery fee prior to implementa-

tion of dynamic pricing. We calculate the optimal uniform fee in the context of the estimated

model. We obtain fee of 5.66 EUR, which yields estimated profits within 0.01 percent of the

actual fee of 5.90 EUR.

7.4 Counterfactual Analysis: No Intertemporal Spillovers

We now use the estimates from the empirical model to assess the role of intertemporal spillovers

in demand in mediating the influence of dynamic pricing. To do so, we need a counterfactual

in which consumers do not strategically pick when they make their purchase.

To simulate this behavior, we take value that each consumer puts on each hour of the week,

ξh from the estimated model. We then treat each consumer as having a binary decision to

purchase at hour h or not purchase (and choose the outside option). To fit this model, we need

to determine the market size separately for each hour h. We pick the market size so that the
24The simple model fits the estimated marginal costs well, with an R2 of 0.77. We do not provide the coefficients

to avoid disclosing certain details about the business.
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Figure 12: Baseline and Counterfactual Impacts on Costs
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Notes: Figure displays the percent change in average variable costs across hours of the week. The black markers
report the changes for the baseline model, and the red diamonds give the percent changes in the counterfactual
with no intertemporal spillovers.

quantities match the uniform pricing case.25 We then calculate the quantities that would be

chosen with no intertemporal spillovers under this model and the (baseline) realized prices.

Figure 12 displays the change in average variable costs across hours. The x-axis gives the

percent change in price occurring as a result of dynamic pricing, and the y-axis is the percent

change in average variable production costs. The black dots give the changes in the base-

line model, while the red diamonds give the counterfactual changes with no intertemporal

spillovers.

The red diamonds trace out a fairly intuitive pattern: when the price decreases, average

variable costs increase as a result of increased quantities and convex production costs. For

the hours with price increases toward the right of the graph, reduced quantities lead to lower

production costs. The red diamonds indicate fairly modest changes in costs.

By contrast, intertemporal spillovers generate consumer response that is much more sen-

sitive to the price changes. The black markers indicate larger swings in quantities as a result

of the shifts in prices, and the resulting patterns are more complicated. There are points in

the upper right quadrant, indicating that quantities and costs increased for some periods with

higher prices. There are points in the lower left quadrant, indicating periods where prices and

quantities fell. Unlike the counterfactual, there is a interdependence across periods, so that a

price increase in one period can drive up demand in another period (even if that period also
25Note that the shares will (intentionally) not match intertemporal spillover shares, because the market with

intertemporal spillovers includes all other hours of the week.
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Figure 13: Baseline and Counterfactual Optimal Price Changes
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Notes: Figure displays the optimal price changes across hours of the week. The black markers report the optimal
changes for the baseline model, and the red diamonds give the optimal changes in the counterfactual with no
intertemporal spillovers.

has an increase in price).

With no intertemporal spillovers, production costs increase by 3.1 percent overall, in con-

trast to the 2.8 percent reduction we estimate in the baseline. Thus, accounting for intertem-

poral spillovers can be important to understand the key mechanisms behind dynamic pricing.

Finally, we calculate the optimal prices for the counterfactual with no intertemporal

spillovers in demand. Figure 13 displays the results. The black markers give the (optimal)

baseline price changes by the hour of the week. The red diamonds provide the optimal prices

changes in the counterfactual with no intertemporal spillovers.

Relative to the baseline, the counterfactual predicts even lower prices. This can be attributed

to two factors. First, with intertemporal spillovers, the firm has an overall incentive to keep

prices high because a consumer may be re-captured in another period. With no intertemporal

spillovers, a consumer that doesn’t buy in a given period simply exits the market. The second

(and related) factor is that the firm cannot lower prices too much in the low-demand periods,

as lower prices can cannibalize consumers from higher-price (and higher-margin) periods.

Before dynamic pricing, uniform prices were maintained at high levels to limit the impact

to costs in high-demand periods. Dynamic pricing enabled average prices to fall relative to that

baseline, though the extent that prices are reduced are also affected by these same spillovers.

Thus, this analysis illustrates how intertemporal spillovers can play an important role in affect-

ing the time-series variation in prices.
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8 Conclusion

This paper analyzes the impacts of adopting a dynamic pricing algorithm in the context of

restaurant food delivery. Using high-frequency transaction data, we present evidence that con-

sumers strategically time their purchases in response to time-varying pricing. Intertemporal

substitution appears to occur across days of the week and also at high frequency (within an

hour). We then measure the impact of dynamic pricing on prices, quantities, and demand

volatility. Our empirical strategy utilizes the staggered adoption of the technology by different

groups of restaurants within the same chain.

Our analysis provides a case study of how time-varying prices are implemented in prac-

tice and the potential welfare gains. In our context, we find that the adoption of time-varying

prices led to lower average prices, greater transactions, and a reduction in within-week de-

mand volatility. These results suggest that the firm was more efficiently able to use capacity, as

time-varying prices smoothed out demand within and across days. Our findings indicate that

consumers strategically time their purchases, and we highlight how firms can benefit from this

strategic behavior through high-frequency dynamic pricing.
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Appendix

A Illustrative Examples for Conceptual Framework

To provide some illustrations for the mechanisms in our conceptual framework, we introduce

a stylized two-period model where a monopolist faces time-varying demand and capacity con-

straints. First, we examine the baseline scenario with no intertemporal spillovers in demand.

We then show the implications of intertemporal spillovers for optimal pricing, even when the

firm faces constraints on its ability to raise prices.

A.1 Setup

Consider a monopolist that faces demand across two periods t ∈ {1, 2}. These periods can

be conceptualized as capturing shorter (e.g., 10 minute) or longer (e.g., daily) intervals. Let

demand be linear and take the following form:

q1 = α1 − βp1 + γp2 (A.1)

q2 = α2 − βp2 + γp1 (A.2)

Quantity demanded in each period is given by qt. The parameter αt incorporates demand

shocks, which may vary across periods. Without loss of generality, let α2 > α1 so that period 2

is the high-demand period. Intertemporal spillovers are captured by the coefficient γ ∈ [0, β).

Thus, an increase in p2 will reduce demand in period 2 and increase demand in period 1, and

γ/β gives the share of marginal consumers from period 2 that are diverted to period 1. This

ratio can be interpreted as the fraction of consumers that strategically time their purchases.

The monopolist faces constant marginal costs c in each market, as well as operational costs

that are a function of quantity demanded, ψ(q1, q2). We assume that these costs are increasing

with quantity in each period, ψ1(q1, q2) ≥ 0, and ψ2(q1, q2) ≥ 0. We will impose a specific

functional form below.

The monopolist maximizes profits by choosing a single price across both periods or by choos-

ing different prices in each period (using a dynamic pricing algorithm). For clarity, we assume

complete information, though the key tradeoffs persist in settings with incomplete information.

Thus, the firm’s objective is

max
p1,p2

q1(p1 − c) + q2(p2 − c)− ψ(q1, q2). (A.3)
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In the absence of dynamic pricing, the firm is subject to the constraint p1 = p2 = p̄. We assume

that the firm has perfect information over the realization of demand shocks αt, though this is

not necessary for the results.26

For a simple way to illustrate convex production costs, we assume that operational costs are

discrete capacity constraints. For any quantity above a threshold q̄, the firm bears an additional

per-period operational cost ϕ for increased capacity. After paying for these costs, the marginal

cost of production remains the same. These costs can be though of as the cost of hiring an

additional employee to provide service in periods of high demand.27 We will consider two

possibilities:

• Flexible operational costs: The firm makes the decision to use higher capacity (at cost

ϕ) separately in each period.

• Inflexible operational costs: The firm must make a single decision about capacity across

both periods (paying ϕ in each period).

Thus, the operational cost function takes two possible forms:

ψ(q1, q2) =


ϕ1[q1 > q̄] + ϕ1[q2 > q̄] Flexible operational costs

2ϕ1[max(q1, q2) > q̄] Inflexible operational costs

where 1[·] is the indicator function. In the second case, the firm must pay for higher capacity if

it uses it in any period.

A.2 Dynamic Pricing with No Spillovers

In the case of no intertemporal spillovers (γ = 0), the two periods function as independent

markets. We will evaluate this case as a baseline for price discrimination with and without

operational costs.

Figure A.1 plots the profits as a function of prices for the parameter values (α1, α2, β, c) =

(2, 3, 0.5, 1). Period 1 profits are plotted with a blue dotted line, period 2 profits are plotted

with a red dashed line, and combined profits are plotted with a solid black line. The vertical

line indicates the profit-maximizing price when the firm must choose the same price in each

period, and the diamond markers indicate the profit-maximizing values when different prices

can be set in each period. Four different scenarios are considered.

Panel (a) presents the case with no capacity constraints (ϕ = 0). If the firm sets a single

price across both markets, it is as if it faces aggregate demand q = (α1+α2)− 2βp̄. Given these

26Due to the linearity of the demand system, maximizing the profits for the expected (mean) demand shock is
equivalent to maximizing across the realizations.

27The costs can be generalized to incur an additional cost of ϕ for each multiple of q̄ exceeded.
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Figure A.1: Dynamic Pricing Across Independent Periods
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Notes: Period 1 profits are plotted with a blue dotted line, period 2 profits are plotted with a red dashed line, and
combined profits are plotted with a solid black line. The vertical line indicates the profit-maximizing price when the
firm must choose the same price in each period, and the diamond markers indicate the profit-maximizing values
when different prices can be set in each period.

parameters, the profit-maximizing price is 3. If the firm can use a dynamic pricing algorithm

to respond to time-varying demand shocks, the firm would optimally set a lower price in the

low-demand period and a higher price in the high-demand period, (p1, p2) = (2.5, 3.5). With no

operational costs, this simply reflects the willingness to pay of consumers in different periods

and is a form of third-degree price discrimination.

Now we consider scenarios in which the firm faces operational costs (ϕ = 0.6) for providing

a quantity greater than q̄ = 1. As a baseline, panel (b) presents the case in which operational

costs are present but there is no demand volatility. At the profit-maximizing price, the firm

produces just at the capacity constraint.

Panels (c) and (d) indicate how capacity constraints interact with demand volatility and

influence optimal pricing. In panel (c), the firm has flexible operational costs that can be

turned on or off in each period. In this example, the presence of these costs does not influence
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the optimal uniform price (p̄ = 3), but it increases the optimal variation in prices when using

dynamic pricing. Relative to panel (a), which shows no operational costs, the optimal price in

the high demand period increases (from 3.5 to 4). The higher price enables the firm to stay

within the capacity constraint and avoid additional operational costs. The optimal price in the

low-demand period is unchanged.

Panel (d) provide the case in which operational costs are inflexible, in that they must be

borne for both periods, if at all. In this example, the optimal prices for dynamic pricing are the

same as in panel (c), at 2.5 and 4. However, this scenario indicates another potential effect of

operational costs. If the firm does not have dynamic pricing technology, the firm would prefer

to set a single price of 4 and only operate in the high-demand periods. At a price of 3, the firm

must pay the operational costs in both periods, even though the extra capacity is only used in

high-demand periods.

These scenarios indicate the potential benefits of dynamic pricing in the absence of intertem-

poral spillovers. In the presence of fixed operational costs, firms might use dynamic pricing to

reduce the incidence of these costs (panel (a)) or operate in periods/markets that would not

otherwise be profitable (panel (b)).

Note that dynamic pricing can lead to higher or lower average prices. In this example, with

no operational costs or flexible operational costs (panels (a) and (c)), dynamic pricing leads

to higher average prices because higher prices are charged during peak demand periods. The

average price is 3.13 in panel (a) and 3.37 in panel (c). In panel (d), the average price is also

3.37, but this is lower than the uniform price with inflexible operational costs (4.00).

A.3 Dynamic Pricing with Intertemporal Spillovers

We now consider the case in which consumers may substitute across periods (γ > 0). With these

spillovers, the firm now faces two additional considerations that have opposite implications for

the optimal levels of price volatility. The first is the direct effect of the demand spillovers.

If the firm charges a lower price in the low-demand period, it pulls demand away from the

high-demand (high-margin) period. This effect would tend to reduce the optimal variation in

prices across periods, relative to an environment with no spillovers in demand. In the absence

of operational costs, the optimal pricing strategy would balance the marginal benefit of lower

prices in the low-demand period with the cost of fewer consumers in the high-margin period.

The second consideration is the indirect effect resulting from capacity constraints. If the

firm can pull enough demand away from the high-demand period, it can reduce its operational

costs. This incentive may be strong enough to have the firm lower its price by more than would

otherwise be optimal. This effect can lead to greater variation in prices across periods.

Figure A.2 illustrates these incentives. Similar to Figure A.1, period 1 profits are plotted

with a blue dotted line, period 2 profits are plotted with a red dashed line, and combined

profits are plotted with a solid black line. However, the figure has two key differences. First,
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Figure A.2: Dynamic Pricing with Intertemporal Spillovers

(a) No Operational Costs

0

1

2

3

4

Pr
of

it

1 1.5 2 2.5 3 3.5
Price in Period 1

Period 1 Period 2 Combined

(b) Flexible Operational Costs

0

1

2

3

4

Pr
of

it

1 1.5 2 2.5 3 3.5
Price in Period 1

Period 1 Period 2 Combined

(c) Inflexible Operational Costs

0

1

2

3

4
Pr

of
it

1 1.5 2 2.5 3 3.5
Price in Period 1

Period 1 Period 2 Combined

Notes: Period 1 profits are plotted with a blue dotted line, period 2 profits are plotted with a red dashed line, and
combined profits are plotted with a solid black line. The vertical line indicates the profit-maximizing price when the
firm must choose the same price in each period, and the diamond markers indicate the profit-maximizing values
when different prices can be set in each period.

period 2 prices are held fixed at the optimal uniform price that yields profitability in both

periods (p2 = 3), which is indicated by the vertical line. The x-axis thus only represents the

change in the period 1 price, holding fixed the price in period 2.

Panel (a) indicates the incentives with no operational costs. The price the maximizes period

1 profits, conditional on p2 = 3, is p1 = 2.2. However, taking into account the intertemporal

spillovers, the firm instead would price at p1 = 2.5, which maximizes the combined profits

(black line).

Panel (b) introduces flexible operational costs. This provides an additional incentive for

the firm to lower price in period 1, as it could pull enough demand from period 2 in order to

avoid paying for extra capacity in that period. Thus, the optimal price in period 1 is even lower,
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approximately 1.67. This yields a discrete jump in combined profits (black line) while period

1 profits change continuously. Lowering the price further than this does not benefit the firm

because of the direct effect on period 2 profits and the potential indirect effect of having to pay

higher operational costs in period 1.

Panel (c) presents the same scenario with inflexible operational costs. The optimal pricing

decision is the same as in panel (b). The only difference to note is that the period 1 and overall

profit incentives are aligned, because the firm also sees a discrete jump in profits in period 1 at

p1 = 1.67.

A.4 Discussion

The stylized model captures several of the key considerations in dynamic pricing. First, firm

may use time-varying pricing as a form of third-degree price discrimination to increase revenues

and profits. Second, time-varying pricing may also be used to avoid operational costs that would

otherwise have to be borne with invariant/uniform pricing. When these costs are inflexible,

dynamic pricing may even enable the firm to operate at times that it would not otherwise

choose to do (i.e., stay open longer hours).

Finally, the presence of intertemporal spillovers has additional implications for dynamic

pricing. The direct effect of these spillovers is to mitigate the difference in prices between low-

demand and high-demand periods. A firm that prices too low in the low-demand period gives

up too much profit in the high-demand period. However, the presence of operational costs may

provide an incentive to increase the time-series variation in prices. Firms may want to price

even lower in the low-demand period in order to pull demand away from the high-demand

period and stay within capacity constraints. Overall, these two forces show that the presence

of intertemporal spillovers has ambiguous effects on the optimal levels of price volatility.

Our analysis in Section A.3 focused on a scenario in which the high-demand period price

was held fixed. Though this simplification is useful to illustrate the incentives and tradeoffs, it

also was motivated by real-world considerations and our empirical context. As we discuss in

Section 2, the adoption of dynamic pricing may come with an added constraint of a price cap,

to avoid consumer backlash or scrutiny from regulators.
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B Additional Tables and Figures

Figure B.1: Placebo Checks: Distribution of Orders Around Other Implementation Dates

(a) Group A Placebo
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(b) Group B Placebo
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Notes: Figure displays the density of orders by hour of the week. We index each hour of the week by the mean 2022
expected fees across all groups. In panel (a), we look at group A restaurants before (black line) and after (red line)
the implementation of dynamic pricing by group B. In panel (b), we look at group B restaurants before and after
the implementation of dynamic pricing by group C.
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Figure B.2: Placebo Checks: Distribution of Non-Delivery Orders

(a) Group B Non-Delivery Orders
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(b) Group C Non-Delivery Orders
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Notes: Figure displays the density of non-delivery orders by hour of the week. We index each hour of the week by
the mean 2022 expected fees across all groups. In panel (a), we look at group B restaurants before (black line)
and after (red line) the implementation of dynamic pricing for delivery orders. In panel (b), we look at group C
restaurants before and after the implementation of dynamic pricing for delivery orders.
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Figure B.3: Delivery Fees by Restaurant
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Notes: Figure displays statistics of delivery fees by restaurant over the sample period. Panel (a) displays the weekly
mean, and panel (b) displays the within-week standard deviation for each restaurant. Restaurants in group A are in
gray, group B are in blue, and group C are in red. Gaps in the time series correspond to promotional periods with
zero delivery fees across all restaurants.
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Table B.1: Price Effects: Weekdays versus Weekends

(a) Monday through Thursday

(1) (2) (3) (4) (5) (6)
Mean Mean Mean Std. Dev. Std. Dev. Std. Dev.

Post × Dynamic Pricing
-0.083***
(0.005)

-0.083***
(0.006)

-0.097***
(0.006)

0.034***
(0.005)

0.032***
(0.006)

0.061***
(0.006)

Treatment Group Pooled A B Pooled A B
Period FEs Yes Yes Yes Yes Yes Yes
Restaurant FEs Yes Yes Yes Yes Yes Yes
Observations 10,273 8,528 4,715 10,273 8,528 4,715

(b) Friday through Sunday

(1) (2) (3) (4) (5) (6)
Mean Mean Mean Std. Dev. Std. Dev. Std. Dev.

Post × Dynamic Pricing
-0.021***
(0.003)

-0.025***
(0.004)

-0.027***
(0.005)

0.022***
(0.004)

0.025***
(0.006)

0.022***
(0.005)

Treatment Group Pooled A B Pooled A B
Period FEs Yes Yes Yes Yes Yes Yes
Restaurant FEs Yes Yes Yes Yes Yes Yes
Observations 10,390 8,629 4,728 10,390 8,629 4,728

Notes: Table displays the coefficient estimates for regressions of price outcomes on an indicator for dynamic pricing,
restaurant fixed effects, and time period fixed effects. Panel (a) uses only data from Monday through Thursday, and
panel (b) uses only data from Friday through Sunday. The dependent variable in the first three columns in each
panel is the (mean) log transaction price. The dependent variable in the last three columns is the standard deviation
of the log transaction price. Observations are at the restaurant-week level. Standard errors are in parentheses and
are clustered at the restaurant level. Significance levels: ∗ 10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent.
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Figure B.4: Dynamic Pricing and Demand Volatility: Group A

(a) Group Means: Volatility
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(c) Group Means: Share Fri-Sun
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Notes: Figure displays the within-group means for our measures of volatility. Panels (a) plots the within-week
coefficient of variation in number of transactions. Panel (c) plots the share of transactions that occur between
Friday and Sunday. Each panel plots group A (black line) and its matched controls (dashed red line). Panels (b) and
(d) present the differences between the two, providing a week-by-week event study estimate. These differences do
not also remove the pre-period differences; as can be seen in the figure, group A had higher mean volatility before
the adoption of the algorithm. The period where group A had dynamic pricing and its controls did not is bracketed
by the two vertical lines.
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Figure B.5: Dynamic Pricing and Quantity Demanded: Group A

(a) Group Means: Mon-Thu Transactions
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(c) Group Means: Fri-Sun Transactions
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Notes: Figure displays the within-group means for the log weekly number of transactions. Panel (a) plots the
transactions occurring from Monday through Thursday, and Panel (c) plots transactions that occur between Friday
and Sunday. Each panel plots group A (black line) and its matched controls (dashed red line). In these panels,
values are relative to the Jul-Sep 2020 mean value for group A. Panels (b) and (d) present the differences between
the two, providing a week-by-week event study estimate. These differences do not also remove the pre-period
differences; as can be seen in the figure, group A had greater transactions before the adoption of the algorithm. The
figure also indicates the slightly higher growth rates by the matched controls for group A. The period where group
A had dynamic pricing and its controls did not is bracketed by the two vertical lines.
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Figure B.6: The Impacts of Dynamic Pricing on Revenues: Group A

(a) Group Means: Revenues
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(b) Differences: Revenues
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Notes: Figure displays the within-group means for the log weekly revenues. Panel (a) plots group A (black line)
and its matched controls (dashed red line). In this panel, values are relative to the Jul-Sep 2020 mean value for
group A. Panels (b) presents the differences between the two, providing a week-by-week event study estimate.
These differences do not also remove the pre-period differences; as can be seen in the figure, group A had greater
transactions before the adoption of the algorithm. The figure also indicates the slightly higher growth rates by the
matched controls for group A. The period where group A had dynamic pricing and its controls did not is bracketed
by the two vertical lines.
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Figure B.7: Time-Varying Demand Across Days and Hours
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Notes: Figure presents the implied demand shocks from the empirical model (ξh) across hours of the day by days of
the week. The demand shocks have been re-scaled on the range 0 to 1.
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